Name:
Debes_2023_ApJ_948_36.pdf
Size:
1.935Mb
Format:
PDF
Description:
Final Published Version
Author
Debes, J.Nealon, R.
Alexander, R.
Weinberger, A.J.
Wolff, S.G.
Hines, D.
Kastner, J.
Jang-Condell, H.
Pinte, C.

Plavchan, P.
Pueyo, L.
Affiliation
Department of Astronomy, The University of ArizonaIssue Date
2023-05-04
Metadata
Show full item recordPublisher
Institute of PhysicsCitation
John Debes et al 2023 ApJ 948 36Journal
Astrophysical JournalRights
© 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
We report new total-intensity visible-light high-contrast imaging of the TW Hya disk taken with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope. This represents the first published images of the disk with STIS since 2016, when a moving shadow on the disk surface was reported. We continue to see the shadow moving in a counterclockwise fashion, but in these new images the shadow has evolved into two separate shadows, implying a change in behavior for the occulting structure. Based on radiative-transfer models of optically thick disk structures casting shadows, we infer that a plausible explanation for the change is that there are now two misaligned components of the inner disk. The first of these disks is located between 5 and 6 au with an inclination of 5.5° and position angle (PA) of 170°, and the second between 6 and 7 au with an inclination of 7° and PA of 50°. Finally, we speculate on the implications of the new shadow structure and determine that additional observations are needed to disentangle the nature of TW Hya’s inner-disk architecture. © 2023. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
0004-637XVersion
Final Published Versionae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/acbdf1
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.