A Spectroscopic Analysis of a Sample of K2 Planet-host Stars: Stellar Parameters, Metallicities and Planetary Radii
Name:
Loaiza-Tacuri_2023.pdf
Size:
5.481Mb
Format:
PDF
Description:
Final Published Version
Author
Loaiza-Tacuri, V.Cunha, K.
Smith, V.V.
Martinez, C.F.
Ghezzi, L.
Schuler, S.C.
Teske, J.
Howell, S.B.
Affiliation
Steward Observatory, University of ArizonaIssue Date
2023-03-30
Metadata
Show full item recordPublisher
Institute of PhysicsCitation
V. Loaiza-Tacuri et al 2023 ApJ 946 61Journal
Astrophysical JournalRights
© 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
The physical properties of transiting exoplanets are connected with the physical properties of their host stars. We present a homogeneous spectroscopic analysis based on the spectra of FGK-type stars observed with the Hydra spectrograph on the WIYN telescope. We derived the effective temperatures, surface gravities, and metallicities, for 81 stars observed by K2 and 33 by Kepler 1. We constructed an Fe i and ii line list that is adequate for the analysis of R ∼ 18,000 spectra covering 6050-6350 Å and adopted the spectroscopic technique based on equivalent-width measurements. The calculations were done in LTE using Kurucz model atmospheres and the qoyllur-quipu (q 2) package. We validated our methodology via an analysis of a benchmark solar twin and solar proxies, which are used as a solar reference. We estimated the effects that including Zeeman-sensitive Fe i lines have on the derived stellar parameters for young and possibly active stars in our sample and found them not to be significant. Stellar masses and radii were derived by combining the stellar parameters with Gaia EDR3 and V magnitudes and isochrones. The measured stellar radii have a 4.2% median internal precision, leading to a median internal uncertainty of 4.4% in the derived planetary radii. With our sample of 83 confirmed planets orbiting K2 host stars, the radius gap near R planet ∼ 1.9 R ⊕ is detected, in agreement with previous findings. Relations between the planetary radius, orbital period, and metallicity are explored and these also confirm previous findings for Kepler 1 systems. © 2023. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
0004-637XVersion
Final Published Versionae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/acb137
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.