The Apparent Absence of Forward Scattering in the HD 53143 Debris Disk
Name:
Stark_2023_ApJ_945_131.pdf
Size:
1.872Mb
Format:
PDF
Description:
Final Published Version
Author
Stark, C.C.Ren, B.

MacGregor, M.A.
Howard, W.S.
Hurt, S.A.
Weinberger, A.J.
Schneider, G.
Choquet, E.
Affiliation
Steward Observatory, The University of ArizonaIssue Date
2023-03-14
Metadata
Show full item recordPublisher
Institute of PhysicsCitation
Christopher C. Stark et al 2023 ApJ 945 131Journal
Astrophysical JournalRights
© 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
HD 53143 is a mature Sun-like star and host to a broad disk of dusty debris, including a cold outer ring of planetesimals near 90 au. Unlike most other inclined debris disks imaged at visible wavelengths, the cold disk around HD 53143 appears as disconnected “arcs” of material, with no forward-scattering side detected to date. We present new, deeper Hubble Space Telescope Imaging Spectrograph coronagraphic observations of the HD 53143 debris disk and show that the forward-scattering side of the disk remains undetected. By fitting our KLIP-reduced observations via forward modeling with an optically thin disk model, we show that fitting the visible wavelength images with an azimuthally symmetric disk with unconstrained orientation results in an unphysical edge-on orientation that is at odds with recent ALMA observations, while constraining the orientation to that observed by ALMA results in nearly isotropically scattering dust. We show that the HD 53143 host star exhibits significant stellar variations due to spot rotation and revisit age estimates for this system. © 2023. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
0004-637XVersion
Final Published Versionae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/acbb64
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.