Connecting Infrared Surface Brightness Fluctuation Distances to Type Ia Supernova Hosts: Testing the Top Rung of the Distance Ladder
Author
Garnavich, P.
Wood, C.M.
Milne, P.
Jensen, J.B.
Blakeslee, J.P.
Brown, P.J.
Scolnic, D.
Rose, B.
Brout, D.
Affiliation
Steward Observatory, University of ArizonaIssue Date
2023-08-01
Metadata
Show full item recordPublisher
Institute of PhysicsCitation
Peter Garnavich et al 2023 ApJ 953 35Journal
Astrophysical JournalRights
© 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
We compare infrared surface brightness fluctuation (IR SBF) distances measured in galaxies that have hosted type Ia supernovae (SNe Ia) to distances estimated from SNe Ia light-curve fits. We show that the properties of the SNe Ia found in IR SBF hosts are very different from those exploding in Cepheid calibrators, therefore this is a direct test of systematic uncertainties on the estimation of the Hubble constant (H 0) using SNe. The IR SBF results from Jensen et al. provide a large and uniformly measured sample of IR SBF distances which we directly compare with the distances to 25 SN Ia host galaxies. We divide the Hubble flow SNe Ia into subsamples that best match the divergent SN properties seen in the IR SBF hosts and Cepheid hosts. We further divide the SNe Ia into a sample with light-curve widths and host masses that are congruent to those found in the SBF-calibrated hosts. We refit the light-curve stretch and color correlations with luminosity, and use these revised parameters to calibrate a sample of “Hubble flow” SNe Ia with IR SBF calibrators. Relative to the Hubble flow sample, the average calibrator distance moduli vary by 0.03 mag depending on the SN Ia subsample examined and this adds a 1.8% systematic uncertainty to our Hubble constant estimate. Based on the IRSBF calibrators, H 0 = 74.6 ± 0.9(stat) ± 2.7(syst) km s−1 Mpc−1, which is consistent with the Hubble constant derived from SNe Ia calibrated from Cepheid variables. We conclude that IR SBFs provide reliable calibration of SNe Ia with a precision comparable to Cepheid calibrators, and with a significant saving in telescope time. © 2023. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
0004-637XVersion
Final Published Versionae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/ace04b
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.