Analytic Post-Newtonian Astrometric and Spectroscopic Models of Orbits around Black Holes
Affiliation
Steward Observatory, Department of Astronomy, University of ArizonaIssue Date
2023-07-14
Metadata
Show full item recordPublisher
Institute of PhysicsCitation
Sóley Ó. Hyman et al 2023 ApJ 952 35Journal
Astrophysical JournalRights
© 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Observations of the S stars, the cluster of young stars in the inner 0.1 pc of the Galactic center, have been crucial in providing conclusive evidence for a supermassive black hole at the center of our galaxy. Since some of the stars have orbits less than that of a typical human lifetime, it is possible to observe multiple orbits and test the weak-field regime of general relativity. Current calculations of orbits require relatively slow and expensive computations in order to perform numerical integrations for the position and momentum of each star at each observing time. In this paper, we present a computationally efficient, first-order post-Newtonian model for the astrometric and spectroscopic data gathered for the S stars. We find that future, 30 m class telescopes—and potentially even current large telescopes with very high spectroscopic resolution—may be able to detect the Shapiro effect for an S star in the next decade or so. © 2023. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
0004-637XVersion
Final Published Versionae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/accb52
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.