Systematic Multiepoch Monitoring of LkCa 15: Dynamic Dust Structures on Solar System Scales
Affiliation
Steward Observatory, University of ArizonaIssue Date
2023-08-02
Metadata
Show full item recordPublisher
Institute of PhysicsCitation
Steph Sallum et al 2023 ApJ 953 55Journal
Astrophysical JournalRights
© 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
We present the highest-angular-resolution infrared monitoring of LkCa 15, a young solar analog hosting a transition disk. This system has been the subject of a number of direct-imaging studies from the millimeter through the optical, which have revealed multiple protoplanetary disk rings as well as three orbiting protoplanet candidates detected in infrared continuum emission (one of which was simultaneously seen at Hα). We use high-angular-resolution infrared imaging from 2014 to 2020 to systematically monitor these infrared signals and determine their physical origin. We find that three self-luminous protoplanets cannot explain the positional evolution of the infrared sources since the longer time baseline images lack the coherent orbital motion that would be expected for companions. However, the data still strongly prefer a time-variable morphology that cannot be reproduced by static scattered-light disk models. The multiepoch observations suggest the presence of complex and dynamic substructures moving through the forward-scattering side of the disk at ∼20 au or quickly varying shadowing by closer-in material. We explore whether the previous Hα detection of one candidate would be inconsistent with this scenario and in the process develop an analytical signal-to-noise penalty for Hα excesses detected near forward-scattered light. Under these new noise considerations, the Hα detection is not strongly inconsistent with forward scattering, making the dynamic LkCa 15 disk a natural explanation for both the infrared and Hα data. © 2023. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
0004-637XVersion
Final Published Versionae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/ace16c
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2023. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.