Differential tt¯ cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb −1 of ATLAS data
Author
ATLAS CollaborationAffiliation
Department of Physics, University of ArizonaIssue Date
2023-04-18
Metadata
Show full item recordCitation
The ATLAS collaboration., Aad, G., Abbott, B. et al. Differential cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb−1 of ATLAS data. J. High Energ. Phys. 2023, 80 (2023). https://doi.org/10.1007/JHEP04(2023)080Journal
Journal of High Energy PhysicsRights
Copyright CERN, for the benefit of the ATLAS Collaboration. Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0).Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 TeV proton–proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum (pT) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the tt¯ → WWbb¯ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have pT> 500 GeV and pT> 350 GeV, respectively, is 331 ± 3(stat.) ± 39(syst.) fb. This is approximately 20% lower than the prediction of 398−49+48 fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is 1.94 ± 0.02(stat.) ± 0.25(syst.) pb. This agrees with the NNLO prediction of 1.96−0.17+0.02 pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators. [Figure not available: see fulltext.]. © 2023, The Author(s).Note
Open access journalISSN
1029-8479Version
Final Published Versionae974a485f413a2113503eed53cd6c53
10.1007/JHEP04(2023)080
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright CERN, for the benefit of the ATLAS Collaboration. Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0).