Search for tt¯ H/ A→ tt¯ tt¯ production in the multilepton final state in proton–proton collisions at √s = 13 TeV with the ATLAS detector
Author
ATLAS CollaborationAffiliation
Department of Physics, University of ArizonaIssue Date
2023-07-26
Metadata
Show full item recordCitation
The ATLAS collaboration., Aad, G., Abbott, B. et al. Search for tt¯ H/ A→ tt¯ tt¯ production in the multilepton final state in proton–proton collisions at √s = 13 TeV with the ATLAS detector. J. High Energ. Phys. 2023, 203 (2023). https://doi.org/10.1007/JHEP07(2023)203Journal
Journal of High Energy PhysicsRights
Copyright CERN, for the benefit of the ATLAS Collaboration. Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0).Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
A search for a new heavy scalar or pseudo-scalar Higgs boson (H/A) produced in association with a pair of top quarks, with the Higgs boson decaying into a pair of top quarks (H/A → tt¯) is reported. The search targets a final state with exactly two leptons with same-sign electric charges or at least three leptons. The analysed dataset corresponds to an integrated luminosity of 139 fb −1 of proton–proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Two multivariate classifiers are used to separate the signal from the background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of a type-II two-Higgs-doublet model. The observed (expected) upper limits at 95% confidence level on the tt¯ H/ A production cross-section times the branching ratio of H/A → tt¯ range between 14 (10) fb and 6 (5) fb for a heavy Higgs boson with mass between 400 GeV and 1000 GeV, respectively. Assuming that only one particle, either the scalar H or the pseudo-scalar A, contributes to the tt¯ tt¯ final state, values of tan β below 1.2 or 0.5 are excluded for a mass of 400 GeV or 1000 GeV, respectively. These exclusion ranges increase to tan β below 1.6 or 0.6 when both particles are considered. [Figure not available: see fulltext.] © 2023, The Author(s).Note
Open access journalISSN
1029-8479Version
Final Published Versionae974a485f413a2113503eed53cd6c53
10.1007/JHEP07(2023)203
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright CERN, for the benefit of the ATLAS Collaboration. Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0).