Multidimensional Signals and Analytic Flexibility: Estimating Degrees of Freedom in Human-Speech Analyses
Name:
coretta-et-al-2023.pdf
Size:
6.740Mb
Format:
PDF
Description:
Final Published Version
Author
Coretta, S.Casillas, J.V.
Roessig, S.
Franke, M.
Ahn, B.
Al-Hoorie, A.H.
Al-Tamimi, J.
Alotaibi, N.E.
AlShakhori, M.K.
Altmiller, R.M.
Arantes, P.
Athanasopoulou, A.
Baese-Berk, M.M.
Bailey, G.
Sangma, C.B.A.
Beier, E.J.
Benavides, G.M.
Benker, N.
BensonMeyer, E.P.
Benway, N.R.
Berry, G.M.
Bing, L.
Bjorndahl, C.
Bolyanatz, M.
Braver, A.
Brown, V.A.
Brown, A.M.
Brugos, A.
Buchanan, E.M.
Butlin, T.
Buxó-Lugo, A.
Caillol, C.
Cangemi, F.
Carignan, C.
Carraturo, S.
Caudrelier, T.
Chodroff, E.
Cohn, M.
Cronenberg, J.
Crouzet, O.
Dagar, E.L.
Dawson, C.
Diantoro, C.A.
Dokovova, M.
Drake, S.
Du, F.
Dubuis, M.
Duême, F.
Durward, M.
Egurtzegi, A.
Elsherif, M.M.
Esser, J.
Ferragne, E.
Ferreira, F.
Fink, L.K.
Finley, S.
Foster, K.
Foulkes, P.
Franzke, R.
Frazer-McKee, G.
Fromont, R.
García, C.
Geller, J.
Grasso, C.L.
Greca, P.
Grice, M.
Grose-Hodge, M.S.
Gully, A.J.
Halfacre, C.
Hauser, I.
Hay, J.
Haywood, R.
Hellmuth, S.
Hilger, A.I.
Holliday, N.
Hoogland, D.
Huang, Y.
Hughes, V.
Icardo, Isasa, A.
Ilchovska, Z.G.
Jeon, H.-S.
Jones, J.
Junges, M.N.
Kaefer, S.
Kaland, C.
Kelley, M.C.
Kelly, N.E.
Kettig, T.
Khattab, G.
Koolen, R.
Krahmer, E.
Krajewska, D.
Krug, A.
Kumar, A.A.
Lander, A.
Lentz, T.O.
Li, W.
Li, Y.
Lialiou, M.
Lima, R.M., Jr.
Lo, J.J.H.
Lopez, Otero, J.C.
Mackay, B.
MacLeod, B.
Mallard, M.
McConnellogue, C.-A.M.
Moroz, G.
Murali, M.
Nalborczyk, L.
Nenadić, F.
Nieder, J.
Nikolić, D.
Nogueira, F.G.S.
Offerman, H.M.
Passoni, E.
Pélissier, M.
Perry, S.J.
Pfiffner, A.M.
Proctor, M.
Rhodes, R.
Rodríguez, N.
Roepke, E.
Röer, J.P.
Sbacco, L.
Scarborough, R.
Schaeffler, F.
Schleef, E.
Schmitz, D.
Shiryaev, A.
Sóskuthy, M.
Spaniol, M.
Stanley, J.A.
Strickler, A.
Tavano, A.
Tomaschek, F.
Tucker, B.V.
Turnbull, R.
Ugwuanyi, K.O.
Urrestarazu-Porta, I.
van de Vijver, R.
Van Engen, K.J.
van Miltenburg, E.
Wang, B.X.
Warner, N.
Wehrle, S.
Westerbeek, H.
Wiener, S.
Winters, S.
Wong, S.G.J.
Wood, A.
Wottawa, J.
Xu, C.
Zárate-Sández, G.
Zellou, G.
Zhang, C.
Zhu, J.
Roettger, T.B.
Affiliation
Department of Linguistics, University of ArizonaIssue Date
2023-07-20
Metadata
Show full item recordPublisher
SAGE Publications Inc.Citation
Coretta S, Casillas JV, Roessig S, et al. Multidimensional Signals and Analytic Flexibility: Estimating Degrees of Freedom in Human-Speech Analyses. Advances in Methods and Practices in Psychological Science. 2023;6(3). doi:10.1177/25152459231162567Rights
© The Author(s) 2023. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/).Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Recent empirical studies have highlighted the large degree of analytic flexibility in data analysis that can lead to substantially different conclusions based on the same data set. Thus, researchers have expressed their concerns that these researcher degrees of freedom might facilitate bias and can lead to claims that do not stand the test of time. Even greater flexibility is to be expected in fields in which the primary data lend themselves to a variety of possible operationalizations. The multidimensional, temporally extended nature of speech constitutes an ideal testing ground for assessing the variability in analytic approaches, which derives not only from aspects of statistical modeling but also from decisions regarding the quantification of the measured behavior. In this study, we gave the same speech-production data set to 46 teams of researchers and asked them to answer the same research question, resulting in substantial variability in reported effect sizes and their interpretation. Using Bayesian meta-analytic tools, we further found little to no evidence that the observed variability can be explained by analysts’ prior beliefs, expertise, or the perceived quality of their analyses. In light of this idiosyncratic variability, we recommend that researchers more transparently share details of their analysis, strengthen the link between theoretical construct and quantitative system, and calibrate their (un)certainty in their conclusions. © The Author(s) 2023.Note
Open access articleISSN
2515-2459Version
Final Published Versionae974a485f413a2113503eed53cd6c53
10.1177/25152459231162567
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © The Author(s) 2023. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/).