Evolution of massive stellar triples and implications for compact object binary formation
Affiliation
Steward Observatory, University of ArizonaIssue Date
2022-09-01
Metadata
Show full item recordPublisher
Oxford University PressCitation
Jakob Stegmann, Fabio Antonini, Maxwell Moe, Evolution of massive stellar triples and implications for compact object binary formation, Monthly Notices of the Royal Astronomical Society, Volume 516, Issue 1, October 2022, Pages 1406–1427, https://doi.org/10.1093/mnras/stac2192Rights
© 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Most back hole and neutron star progenitors are found in triples or higher multiplicity systems. Here, we present a new triple stellar evolution code, ${\tt TSE}$, which simultaneously takes into account the physics of the stars and their gravitational interaction. ${\tt TSE}$ is used to simulate the evolution of massive stellar triples in the galactic field from the zero-age main sequence until they form compact objects. To this end, we implement initial conditions that incorporate the observed high correlation between the orbital parameters of early-type stars. We show that the interaction with a tertiary companion can significantly impact the evolution of the inner binary. High eccentricities can be induced by the third-body dynamical effects, leading to a Roche lobe overflow or even to a stellar merger from initial binary separations 103-$10^5\, \rm R_\odot$. In $\sim 5\, {{\ \rm per\ cent}}$ of the systems, the tertiary companion itself fills its Roche lobe, while $\sim 10\, {{\ \rm per\ cent}}$ of all systems become dynamically unstable. We find that between $0.3{{\ \rm per\ cent}}$ and $5{{\ \rm per\ cent}}$ of systems form a stable triple with an inner compact object binary, where the exact fraction depends on metallicity and the natal kick prescription. Most of these triples are binary black holes with black hole companions. We find no binary neutron star in any surviving triple, unless zero natal kicks are assumed. About half of all black hole binaries formed in our models are in triples, where in the majority, the tertiary black hole can perturb their long-term evolution. Our results show that triple interactions are key to a full understanding of massive star evolution and compact object binary formation. © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.Note
Immediate accessISSN
0035-8711Version
Final Published Versionae974a485f413a2113503eed53cd6c53
10.1093/mnras/stac2192