Green Synthesized Silver Nanoparticles: A Novel Approach for the Enhanced Growth and Yield of Tomato against Early Blight Disease
Name:
microorganisms-11-00886.pdf
Size:
6.062Mb
Format:
PDF
Description:
Final Published Version
Affiliation
School of Plant Sciences, University of ArizonaIssue Date
2023-03-29Keywords
agricultural sustainabilitydisease management
plant growth
plant protection
silver nanoparticles
tomato
Metadata
Show full item recordPublisher
MDPICitation
Ansari, M.; Ahmed, S.; Abbasi, A.; Hamad, N.A.; Ali, H.M.; Khan, M.T.; Haq, I.U.; Zaman, Q.u. Green Synthesized Silver Nanoparticles: A Novel Approach for the Enhanced Growth and Yield of Tomato against Early Blight Disease. Microorganisms 2023, 11, 886. https://doi.org/10.3390/microorganisms11040886Journal
MicroorganismsRights
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Tomato plants are among the most widely cultivated and economically important crops worldwide. Farmers’ major challenge when growing tomatoes is early blight disease caused by Alternaria solani, which results in significant yield losses. Silver nanoparticles (AgNPs) have gained popularity recently due to their potential antifungal activity. The present study investigated the potential of green synthesized silver nanoparticles (AgNPs) for enhancing the growth and yield of tomato plants and their resistance against early blight disease. AgNPs were synthesized using leaf extract of the neem tree. Tomato plants treated with AgNPs showed a significant increase in plant height (30%), number of leaves, fresh weight (45%), and dry weight (40%) compared to the control plants. Moreover, the AgNP–treated plants exhibited a significant reduction in disease severity index (DSI) (73%) and disease incidence (DI) (69%) compared to the control plants. Tomato plants treated with 5 and 10 ppm AgNPs reached their maximum levels of photosynthetic pigments and increased the accumulation of certain secondary metabolites compared to the control group. AgNP treatment improved stress tolerance in tomato plants as indicated by higher activities of antioxidant enzymes such as PO (60%), PPO (65%), PAL (65.5%), SOD (65.3%), CAT (53.8%), and APX (73%). These results suggest that using green synthesized AgNPs is a promising approach for enhancing the growth and yield of tomato plants and protecting them against early blight disease. Overall, the findings demonstrate the potential of nanotechnology-based solutions for sustainable agriculture and food security. © 2023 by the authors.Note
Open access journalISSN
2076-2607Version
Final Published Versionae974a485f413a2113503eed53cd6c53
10.3390/microorganisms11040886
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).