The climate and compositional variation of the highly eccentric planet HD 80606 b – the rise and fall of carbon monoxide and elemental sulfur
Affiliation
Lunar and Planetary Laboratory, University of ArizonaIssue Date
2023-02-01Keywords
methods: numericalplanets
planets and satellites: atmospheres
planets and satellites: composition
satellites: individual: HD 80606 b
Metadata
Show full item recordPublisher
Oxford University PressCitation
Shang-Min Tsai, Maria Steinrueck, Vivien Parmentier, Nikole Lewis, Raymond Pierrehumbert, The climate and compositional variation of the highly eccentric planet HD 80606 b – the rise and fall of carbon monoxide and elemental sulfur, Monthly Notices of the Royal Astronomical Society, Volume 520, Issue 3, April 2023, Pages 3867–3886, https://doi.org/10.1093/mnras/stad214Rights
© 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/).Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
The gas giant HD 80606 b has a highly eccentric orbit (e ∼ 0.93). The variation due to the rapid shift of stellar irradiation provides a unique opportunity to probe the physical and chemical timescales and to study the interplay between climate dynamics and atmospheric chemistry. In this work, we present integrated models to study the atmospheric responses and the underlying physical and chemical mechanisms of HD 80606 b. We first run 3D general circulation models (GCMs) to establish the atmospheric thermal and dynamical structures for different atmospheric metallicities and internal heat. Based on the GCM output, we then adopted a 1D time-dependent photochemical model to investigate the compositional variation along the eccentric orbit. The transition of the circulation patterns of HD 80606 b matched the dynamics regimes in previous works. Our photochemical models show that efficient vertical mixing leads to deep quench levels of the major carbon and nitrogen species and the quenching behaviour does not change throughout the eccentric orbit. Instead, photolysis is the main driver of the time-dependent chemistry. While CH4 dominates over CO through most of the orbits, a transient state of [CO]/[CH4] > 1 after periastron is confirmed for all metallicity and internal heat cases. The upcoming JWST Cycle 1 GO program will be able to track this real-time CH4–CO conversion and infer the chemical timescale. Furthermore, sulfur species initiated by sudden heating and photochemical forcing exhibit both short-term and long-term cycles, opening an interesting avenue for detecting sulfur on exoplanets. © The Author(s) 2023.Note
Open access articleISSN
0035-8711Version
Final Published Versionae974a485f413a2113503eed53cd6c53
10.1093/mnras/stad214
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/).