Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. II. Cross-correlation measurements and cosmological constraints
Name:
PhysRevD.107.023530.pdf
Size:
2.484Mb
Format:
PDF
Description:
Final Published Version
Affiliation
Department of Astronomy/Steward Observatory, University of ArizonaDepartment of Physics, University of Arizona
Issue Date
2023-01-31
Metadata
Show full item recordPublisher
American Physical SocietyCitation
Chang, Chihway, et al. "Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and P l a n c k. II. Cross-correlation measurements and cosmological constraints." Physical Review D 107.2 (2023): 023530.Journal
Physical Review DRights
© 2023 American Physical Society.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Cross-correlations of galaxy positions and galaxy shears with maps of gravitational lensing of the cosmic microwave background (CMB) are sensitive to the distribution of large-scale structure in the Universe. Such cross-correlations are also expected to be immune to some of the systematic effects that complicate correlation measurements internal to galaxy surveys. We present measurements and modeling of the cross-correlations between galaxy positions and galaxy lensing measured in the first three years of data from the Dark Energy Survey with CMB lensing maps derived from a combination of data from the 2500 deg2 SPT-SZ survey conducted with the South Pole Telescope and full-sky data from the Planck satellite. The CMB lensing maps used in this analysis have been constructed in a way that minimizes biases from the thermal Sunyaev Zel'dovich effect, making them well suited for cross-correlation studies. The total signal-to-noise of the cross-correlation measurements is 23.9 (25.7) when using a choice of angular scales optimized for a linear (nonlinear) galaxy bias model. We use the cross-correlation measurements to obtain constraints on cosmological parameters. For our fiducial galaxy sample, which consist of four bins of magnitude-selected galaxies, we find constraints of ωm=0.272-0.052+0.032 and S8σ8ωm/0.3=0.736-0.028+0.032 (ωm=0.245-0.044+0.026 and S8=0.734-0.028+0.035) when assuming linear (nonlinear) galaxy bias in our modeling. Considering only the cross-correlation of galaxy shear with CMB lensing, we find ωm=0.270-0.061+0.043 and S8=0.740-0.029+0.034. Our constraints on S8 are consistent with recent cosmic shear measurements, but lower than the values preferred by primary CMB measurements from Planck. © 2023 American Physical Society.Note
Immediate accessISSN
2470-0010Version
Final Published Versionae974a485f413a2113503eed53cd6c53
10.1103/PhysRevD.107.023530