• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Performance of near-infrared high-contrast imaging methods with JWST from commissioning

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    121803N.pdf
    Size:
    3.768Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Kammerer, J.
    Girard, J.
    Carter, A.L.
    Perrin, M.D.
    Cooper, R.
    Thatte, D.
    Vandal, T.
    Leisenring, J.
    Wang, J.
    Balmer, W.O.
    Sivaramakrishnan, A.
    Pueyo, L.
    Ward-Duong, K.
    Sunnquist, B.
    Redai, J.A.
    Show allShow less
    Affiliation
    Steward Observatory, University of Arizona
    Issue Date
    2022-08-27
    Keywords
    coronagraphy
    exoplanets
    high-contrast imaging
    interferometry
    planetary systems
    space telescopes
    
    Metadata
    Show full item record
    Publisher
    SPIE
    Citation
    Jens Kammerer, Julien Girard, Aarynn L. Carter, Marshall D. Perrin, Rachel Cooper, Deepashri Thatte, Thomas Vandal, Jarron Leisenring, Jason Wang, William O. Balmer, Anand Sivaramakrishnan, Laurent Pueyo, Kimberly Ward-Duong, Ben Sunnquist, and Jéa Adams Redai "Performance of near-infrared high-contrast imaging methods with JWST from commissioning", Proc. SPIE 12180, Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave, 121803N (27 August 2022); https://doi.org/10.1117/12.2628865
    Journal
    Proceedings of SPIE - The International Society for Optical Engineering
    Rights
    © 2022 SPIE.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    The James Webb Space Telescope (JWST) will revolutionize the field of high-contrast imaging and enable both the direct detection of Saturn-mass planets and the characterization of substellar companions in the mid-infrared. While JWST will feature unprecedented sensitivity, angular resolution will be the key factor when competing with ground-based telescopes. Here, we aim to characterize the performance of several extreme angular resolution imaging techniques available with JWST in the 3-5 µm regime based on data taken during the instrument commissioning. Firstly, we introduce custom tools to simulate, reduce, and analyze JWST NIRCam and MIRI coronagraphy data and use these tools to extract companion detection limits from on-sky NIRCam round and bar mask coronagraphy observations. Secondly, we present on-sky JWST NIRISS aperture masking interferometry (AMI) and kernel phase imaging (KPI) observations from which we extract companion detection limits using the publicly available fouriever tool. Scaled to a total integration time of one hour and a target of the brightness of AB Dor (W1 ≈ 4.4 mag, W2 ≈ 3.9 mag), we find that NIRISS AMI and KPI reach contrasts of ∼ 7-8 mag at ∼ 70 mas and ∼ 9 mag at ∼ 200 mas. Beyond ∼ 250 mas, NIRCam coronagraphy reaches deeper contrasts of ∼ 13 mag at ∼ 500 mas and ∼ 15 mag at ∼ 2 arcsec. While the bar mask performs ∼ 1 mag better than the round mask at small angular separations ≲ 0.75 arcsec, it is the other way around at large angular separations ≳ 1.5 arcsec. Moreover, the round mask gives access to the full 360 deg field-of-view which is beneficial for the search of new companions. We conclude that already during the instrument commissioning, JWST high-contrast imaging in the L- and M-bands performs close to its predicted limits and is a factor of ∼ 10 times better at large separations than the best ground-based instruments operating at similar wavelengths despite its > 2 times smaller collecting area. © 2022 SPIE.
    Note
    Immediate access
    ISSN
    0277-786X
    DOI
    10.1117/12.2628865
    Version
    Final Published Version
    ae974a485f413a2113503eed53cd6c53
    10.1117/12.2628865
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.