Mapping Vegetation Index-Derived Actual Evapotranspiration across Croplands Using the Google Earth Engine Platform
Name:
remotesensing-15-01017-v4.pdf
Size:
12.30Mb
Format:
PDF
Description:
Final Published Version
Author
Abbasi, N.Nouri, H.
Didan, K.
Barreto-Muñoz, A.
Chavoshi, Borujeni, S.
Opp, C.
Nagler, P.
Thenkabail, P.S.
Siebert, S.
Affiliation
University of ArizonaIssue Date
2023-02-12
Metadata
Show full item recordPublisher
MDPICitation
Abbasi, N.; Nouri, H.; Didan, K.; Barreto-Muñoz, A.; Chavoshi Borujeni, S.; Opp, C.; Nagler, P.; Thenkabail, P.S.; Siebert, S. Mapping Vegetation Index-Derived Actual Evapotranspiration across Croplands Using the Google Earth Engine Platform. Remote Sens. 2023, 15, 1017. https://doi.org/10.3390/rs15041017Journal
Remote SensingRights
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Precise knowledge of crop water consumption is essential to better manage agricultural water use, particularly in regions where most countries struggle with increasing water and food insecurity. Approaches such as cloud computing and remote sensing (RS) have facilitated access, process, and visualization of big geospatial data to map and monitor crop water requirements. To find the most reliable Vegetation Index (VI)-based evapotranspiration (ETa) for croplands in drylands, we modeled and mapped ETa using empirical RS methods across the Zayandehrud river basin in Iran for two decades (2000–2019) on the Google Earth Engine platform using the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index 2 (EVI2). Developed ET-VI products in this study comprise three NDVI-based ETa (ET-NDVI*, ET-NDVI*scaled, and ET-NDVIKc) and an EVI2-based ETa (ET-EVI2). We (a) applied, for the first time, the ET-NDVI* method to croplands as a crop-independent index and then compared its performance with the ET-EVI2 and crop ET, and (b) assessed the ease and feasibility of the transferability of these methods to other regions. Comparing four ET-VI products showed that annual ET-EVI2 and ET-NDVI*scaled estimations were close. ET-NDVIKc consistently overestimated ETa. Our findings indicate that ET-EVI2 and ET-NDVIKc were easy to parametrize and adopt to other regions, while ET-NDVI* and ET-NDVI*scaled are site-dependent and sensitive to image acquisition time. ET-EVI2 performed robustly in arid and semi-arid regions making it a better tool. Future research should further develop and confirm these findings by characterizing the accuracy of VI-based ETa over croplands in drylands by comparing them with available ETa products and examining their performance using crop-specific comparisons. © 2023 by the authors.Note
Open access journalISSN
2072-4292Version
Final Published Versionae974a485f413a2113503eed53cd6c53
10.3390/rs15041017
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).