• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Investigating the Interaction between Crossflow and Laminar Separation Bubbles

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_21752_sip1_m.pdf
    Size:
    16.21Mb
    Format:
    PDF
    Download
    Author
    Frisch, Andrew
    Issue Date
    2024
    Keywords
    Crossflow
    Interactions
    Laminar Separation Bubbles
    Low-speed flows
    Pressure gradient
    Advisor
    Little, Jesse
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This experimental investigation explores crossflow and its interaction with laminar separation bubbles in low-speed flows.The suction side of a modified NACA $64_3-618$ airfoil was tested in conditions relevant to strong crossflow and crossflow instabilities (forced and unforced) in the presence of a laminar separation bubble. Laminar separation bubbles were identified on the model at $Re_c = 600k$ ($AoA > \ang{-2}$) through time-averaged pressure measurements and infrared thermography. Discrete roughness elements were used to promote the most unstable wavelenght of the stationary crossflow instability and obtain measurable disturbance amplitudes for crossflow instabilities within the laminar separation bubble. Infrared thermography was used to confirm the application of the roughness elements by showing the enhancement of the stationary modes at the forced wavelength ($ \lambda = \SI{3.5}{mm}$) at $AoA = \ang{-8}$ and $AoA = \ang{-1}$. Time resolved hotwire measurements provided information about the stationary, primary traveling, and secondary crossflow instabilities. It also provided knowledge of potential Kelvin-Helmholtz instabilities around the transition region of the separation bubble. DREs successfully forced the stationary crossflow mode. However, development of the primary traveling and secondary instabilities are also shown within the boundary layer. In accordance with previous research, the primary instability was seen to displace off of the wall and a set of opposite rotational vortices develops when entering the adverse pressure gradient. It was also shown that multiple secondary instability modes likely contributed to the stationary crossflow mode dominated transition. The dominant frequency bands observed near the typical IR-visualized sawtooth pattern, often associated with crossflow instability-induced transition, appear similar to those previously observed for the secondary instability of the forced stationary mode, having the largest amplitudes when approaching the estimated transition location. In the presence of a laminar separation bubble ($AoA = \ang{-1}$), crossflow was reduced at measurements located within the bubble as the upstream favorable pressure gradient is weaker than at -8 degrees. Growth of a set of opposite-rotating vortices was observed and is consist with the higher frequency modes $\SI{2000}{Hz} \leq f \leq \SI{3500}{Hz}$. As the measurement location approached transition, the crossflow vortices seem to combine with shear layer (K-H) instabilities and eventually leading to a more 2D flow field around reattachment. Higher resolution streamwise measurements between transition and reattachment are needed to corroborate this claim. Spectral analysis shows that the interaction of Kelvin Helmholtz and crossflow instabilities appears to dominate transition. This is postulated since the dominant frequency range near transition is lower than that observed without forced crossflow instabilities. Higher frequency instability modes are also shown in the power spectra which could relate to secondary crossflow instabilities and/or higher order interactions with the Kelvin-Helmholtz instability, but the exact mode could not be identified in the scope of this work. To further this investigation, higher resolution CTA is required, as well as the use of x-wires to collect multi-component velocity data to separate crossflow velocity and chordwise velocity profiles.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Aerospace Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.